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Critical behaviour of self-avoiding walks that cross a 
square 
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Department of Mathematics and Statistics, York University, 4700 Keele Street, Downsview, 
Ontario. Canada M3J 1P3 

Received 26 July 1994 

Abstract. Consider the set of all self-avoiding walks in the squm lonice which start at (0. 0). 
end at (L .  L). and are entirely contained in the square [O. L] x IO, Ll. Associate a fugacity .r 
with each step of the walk. Whinington and Gultmann (1990) showed that the dominant walks 
have O(L)  steps when x is small and O(Lz) steps when x is large, and they conjectured that 
there is a single transition point at x = p-', where p is the inverse of the connective constant 
for (unconstrained) self-avoiding walks. We present a rigorous proof of this conjecture (and its 
analogue in higher dimensions). We also discuss what can be said rigorously about two scaling 
exponents associated with this phase transition, and compare this with analogous results that 
have been obtained exactly (and rigorously) on the discrete Sierpioski gasket by Hattod. Hattori 
and Kusuoka (1990). 

1. Introduction 

The self-avoiding walk has long been a standard model of a long linear polymer molecule 
in a good solvent (Madras and Slade 1993). The usual setting is a single walk on an infinite 
lattice, which models a polymer in a dilute solution. If we consider instead a (large) finite 
region of a lattice, then the solution changes from dilute to dense as we increase the length 
of the walk (or the fugacity for the number of steps). In fact, Whittington and Guttmann 
(1990) proved the existence of a dilute-to-dense phase transition for the model described in 
the next paragraph. The aim of  the present paper is to prove some rigorous results about 
this transition. 

To fix ideas, let us begin with self-avoiding walks on the square lattice 2'. For large L,  
consider the set of all self-avoiding walks which start at the origin (0, O),  end at ( L ,  L ) ,  
and are entirely contained in the square [O,  L] x [O, L ] .  Associate a fugacity x with each 
step of the walk. Whittington and Guttmann (1990) showed that when x is small the 
dominant walks have O(L) steps, while when x is large the dominant walks have O ( L z )  
steps. They showed that the transition occurred for x somewhere between p-' and p i ' ,  
where p is the connective constant for (unconstrained) self-avoiding walks and /LH is the 
connective constant for Hamiltonian walks in a square. They conjectured, on numerical 
grounds, that there was a single transition point at p-'. This conjecture was supported by 
a renormalization analysis (Prentis 1991) and by a correspondence with N-vector models 
(Burkhardt and Guim 1991). 

In this paper we give a rigorous proof of the conjecture of Whittington and Guttmann 
(1990). We also discuss what can be said rigorously about two scaling exponents associated 
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with this phase transition. This is compared with analogous results that have been obtained 
exactly (and rigorously) on the pre-Sierpinski gasket (Hattori er al 1990). We shall also 
describe some generalizations: to hypercubes in three or more dimensions, to walks with 
free endpoints that are constrained to lie in a hypercube (which may be a more natural model 
for the dilute-to-dense transition), and to analogous problems with lattice trees and lattice 
animals (modelling branched polymers in a good solvent). We also discuss the relation of 
the high-fugacity phase to systems of infinitely dense polymers, 

2. Delinitions and statement of results 

We shall do all of our work in the d-dimensional hypercubic latrice Z" with d 2 2. If 
L is an integer, then we shall write L := ( L ,  . . . , L) E: Zd. In particular, 0 denotes the 
origin. We shall also write [O, LId to denote the d-dimensional hypercube that has 0 and L 
as opposite corners. 

For n > 0, let c, be the number of n-step self-avoiding walks in Zd which start at the 
origin (and end anywhere). Then there exists a connective constant p with the property that 

lim CA/'' = p (1) n-m 

(Hammersley 1957). For n ,  L > 1 ,  let c,(L) denote the number of n-step self-avoiding 
walks which start at 0, end at L, and are entirely contained in [O, LJd.  For x t 0, we define 
the generating function 

C,(x) := C C , ( L ) X " .  (2) 

Thus x is the step fugacity. We define the following limits, which exist by theorem 2.1 
below (although they may be infinite for some values of x ) :  

h l ( x )  := lim c L ( x ) " ~  (3) 

~ z ( x )  := lim c L ( x ) ' I ~ ~ .  (4) 

L+W 

L - m  

Theorem 2.1. 
(i)  The limit (3) exists and is finite for 0 < x < p-', and is infinite for x > p-', We have 

0 < h l ( x )  c 1 for 0 c x < p-' and hl (p- ' )  = I. 
(ii) The limit (4) exists and is finite for all x > 0. We have & ( x )  = 1 for 0 < x < @-I 

and 
The existence of the limits follow from concatenation and subadditivity arguments (see 

lemma 4.1). Given the existence of the limit, it is easy to see that & ( x )  is strictly between 
0 and 1 when 0 < x < p-' :  Simply notice that the shortest walk from 0 to L contains 
exactly d L  steps. Therefore c d ~ ( L )  2 1 and c,(L) = 0 for n c d L ,  and so 

> 1 for all x > p-' .  

m 

X * L  Q C , ( X )  < C&". ( 5 )  
n=dL 

From equation (3) and (I), we can now see that 

X d  < h I ( X )  < ( p x ) d  for 0 < x < p-1 . (6) 
1 determine a probability measure P,,L on the set of 

self-avoiding walks in [0, LId that start at 0 and end at L: each such walk w is assigned 
the probability x I U 1 / C ~ ( x ) ,  where 101 is the length of o (that is, the number of steps in U) .  

We shall use ( l w l ) x , ~  to denote the expected length of a walk with respect to P x , ~ .  The 

Every real x > 0 and integer L 
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critical value x = p-' denotes the transition from the expected length being proportional 
to L (so that an average walk is roughly like a straight line) to being proportional to Ld (so 
that an average walk fills space with some non-zero density). The behaviour at x = p-I is 
presumably in between (intuitively L''"), but we cannot prove much about this. The non- 
critical scaling is described in the following theorem. (We use the notation 'f(.) % g(.)' to 
mean that there exist positive, finite constants C and C' such that Cg(.) < f(.) < C'g(.).) 

Theorem 2.2. As L + CO. we have ( I w ~ ) ~ , L  % L for 0 i x < p-' and we have 

We now recall the definition and some properties of the mass for the self-avoiding walk 
(see Madras and Slade 1993 for more details). For 0 c x i p-' and y E Zd, let G,(U. y )  
be the generating function for the collection of all self-avoiding walks that start at 0 and 
end at y .  We define the mass m ( x )  to be the rate of decay of G,(O, y )  along a coordinate 
axis: 

(lWl)x,' = Ld for x > p-1. 

- 10-2 G,(O, (n. 0, . . . , 0)) m ( x )  := lim 
n-rm n (7) 

It is known that this limit exists and is strictly positive whenever 0 < x i p-' , and that 
m ( x )  tends to 0 as x /' p-'. It is generally believed that the mass tends to 0 as a power 
law 

m ( x )  - constant x (p-' - x)"  as x /' p-' ( 8 )  
where v is the exponent which corresponds to the mean end-to-end distance of a self- 
avoiding walk. It is believed that U equals : in two dimensions, 0.588,. . in three 
dimensions, and i (with logarithmic corrections) in four dimensions. In five or more 
dimensions, it is known rigorously (Hara and Slade 1992) that v = i, that (8) holds, and 
that the limit of (7) exists and equals 0 at x = p-'. 

Theorem 2.3. For x > 0, define 

f l ( x )  = loghl(x) and f&) = logh.~(x) 

(i) The function fi is a strictly increasing, negative-valued. convex function of logx for 
0 < x < p-I ,  and f ~ f x )  % - m ( x )  as x /' p-'. 

(ii) For x =- p-', the function fi is a strictly increasing, convex function of logx, and 
satisfies 0 < fZ(x) < 1ogp + logx < p(x - &-I). 

An analogous model was studied rigorously on the discrete Sierpinski gasket by Hattori 
et a1 (1990). They defined a sequence of fractal-like graphs F,, each consisting of 
(3"+' +3)/2 sites, and contained in a large triangle with 2" sites on each side (see figure 1). 
Then they looked at the ensemble of self-avoiding walks on F, that had its two endpoints 
at two specified corners of the large triangle, and gave each walk o the weight xlol. They 
solved this model exactly, and found a transition point x, such that the average length of 
a walk scaled as 2" for x c xc and as 3" for x > xc.  (Later, Hattori and Kusuoka (1992) 
proved that x, equals the inverse of the connective constant for self-avoiding walks on the 
gasket.) 

Hattori eta1 (1990) also proved direct analogues of theorems 2.1 and 2.3, with a stronger 
result in the analogue of theorem 2.3: they showed (i) that f~ ( x )  - -constantx(p-'-x)" as 
x /" p-' , where v = log 2/ log((7 - &)/2) is the exponent for end-to-end distance of self- 
avoiding walks on the Sierpinski gasket (Rammal et al 1984, Klein and Seiz 1984, Hattori 
and Kusuoka 1992); and (ii) that f z ( x )  - constant x ( x  - p-')'' as x \ p-', where 
d = log3/log2 is the Hausdorff dimension of the gasket. Our theorem 2.3 essentially 
- 
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, . . . . . . , . .. . .  . .  . .  . .  . . . . . . . .. '. : .. 
. . Figure 1. A typical self-avoiding walk (full line) on the finite gasket Fz 

(dotted line), 2s nudied by Hatton er d (1990). In that paper, all walks 
begin at the lower leh venex and end a1 the top venex. 

. . .  . .  . .  .. . .  . .  . .  . .  .. '., ' 

proves the analogue of (i), but we have no idea how to prove an analogue of (ii). However, 
it is believed that f 2 ( x )  - constant x ( x  - P - ' ) ~ "  in Euclidean space (see equation (X.59) in 
de Gennes (19791, and equation (13) in Saleur (1987)). (Golowich and Imbrie (1993) prove 
this, with logarithmic corrections, fgr  wea!dy self-avoiding walk on a four-dimensional 
hierarchical lattice.) All that we can say rigorously is that if f 2 ( x )  % ( x  - pL-')q as 
x p-' for some exponent q ,  then q > 1 @y theorem 2.3(ii)). Since we believe q = dv ,  
this corresponds to the assertion U > I j d ,  which (sadly) is the most that one can say 
rigorously about U in general d. 

The scaling behaviour at the critical point xc was also investigated by Hattori ef a1 
(1990). They showed that the average length scales as Z"", and that their analogue of 
CL{&-') converges to (&- 1)/2 as L + 03. This last result is one place where we can 
prove a difference between the behaviours for the gasket and for zd: 
Theorem 2.4. limL-,w  CL(^-') = 0. 

3. Other models 

In this section we consider analogues of the results of section 2 for some other models of 
polymers (lattice trees and lattice animals), as well as modifications that arise when the 
boundary conditions change. 

A [atrice animal is a finite connected subgraph of the lattice Ed (in other papers, this 
is sometimes called a bond animal). A lanice tree is a lattice animal that contains no 
cycles. Let a, (respectively, fa) denote the number of lattice animals (respectively, trees) 
that contain exactly n bonds, and such that the origin is the smallest site of the animal 
(respectively, tree) with respect to lexicographic ordering of the sites of E d .  Then there are 
finite (d-dependent) growth constan& pa and p, such that 

(Klarner 1967, Klein 1981). Next, for n ,  L 2 1, let a,(L) (respectively, ln(L))  denote the 
number of animals (respectively, trees) with n sites that contain both 0 and L as sites and 
are entirely contained in [O. Lid. For x > 0, define the analogues of CL(%): 

A L ( x )  := C a , ( L ) x "  and T L ( x )  := c t , ( L ) x "  
n n 

Here x is a bond fugacity (but we could do similar things if we counted animals by the 
number of sites instead). In either model, the methods of this paper can easily be adapted 
to show that there is a phase transition at the inverse of the growth constant: 
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Theorem 3. I 

( i )  The limit 

exists and lies in the interval (0, 1) for 0 -= x < p;!, and is infinite for x > @;I. The 
limit 

exists and is finite for all x > 0. It equals 1 for 0 < x < p i '  and is strictly bigger than 
1 for all x > p; ' .  

(i i)  The exact analogue of (i) holds for trees, with AL and pa replaced by TL and p,. 

Corollary 3.2. The analogue of theorem 2.2 holds for both of the ensembles corresponding 
to the generating functions of (10). 

The proofs of these results are very much the same as the proofs for self-avoiding walks 
(see section 4). In particular, the proof of the above corollary is omitted, since it is the 
same as the proof of theorem 2.2. 

We now consider what happens when the boundary conditions are removed-that is, 
when we no longer require that the walk (or animal, or tree) join opposite comers of a large 
cube. There are several ways to define such models, but we shall proceed as follows. For 
n. L > 1,  let E.(L) be the number of self-avoiding walks (respectively, lattice animals and 
lattice trees) that begin at the origin, end anywhere, and are entirely contained in the box 
[-L, LJd. For x > 0, let 

Similarly, let ( L )  (respectively, L ( L ) )  be the number of lattice animals (respectively, 
lattice trees) that contain the origin and are entirely contained in the box [ - L q  Lid. Also 
define 

Now things are a little different: 

Theorem 3.3. 

(i) For x > 0, we have 

where ~ ( x )  = E,, c,x" is the susceptibility of self-avoiding walks (which is finite only 
when x < p-'). 

(ii) For x p-I, we have 

1 < A*@) < liminftL(x)1/(2L)d < l i m s u p e . ~ ( ~ ) ' ' ( ~ ~ ) ~  G x p .  (16) 
L+.X L-rm 
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Proof: Equation (15) follows from the monotone convergence theorem, since cn(L) 
increases to c, as L -+ w. The leftmost inequality of (16) comes from theorem LI(ii), 
and the rightmost inequality is a consequence of the bound 

and equation (1). The second inequality of (16) will be proven in section 4 (proposition 4.6). 
0 
is 

different because now the mean length converges to a finite limit as L i 00. Analogues of 
the above results can be formulated and proven for lattice animals and trees in the obvious 
way. 

We do not know how to prove that limL,,?L(z)11(2L)d exists for x > p-l (observe 
that the concatenation idea (see lemma 4.1) does not seem to work here). But it is reasonable 
to expect that this limit exists and equals hz(.r). In fact, this is one place where we can say 
more about animals and trees than we can for walks. 

Theorem 3.4. For x > @;I, 

There is an obvious analogue of theorem 2.2 for this model. Again, the case x c 

4. Proofs 

Lemma 4.1. For every x > 0, the limits of (3) and (4) exist in (0, +CO]. 

Proof: Let L and L’ be positive integers. Any walk from 0 to L that lies in [O. L]” can be 
joined to the front of any walk from L to L + L‘ that lies in [ L ,  L -I L’Id. The result is a 
walk from 0 to L + L‘ that lies in [O, L + L’Id. Therefore CL+L*(X)  > C ~ ( x ) C r . ( x )  for all 
x > 0. The existence of the limit of (3) is now a consequence of subadditivity. 

The existence of the limit of (4) may be proven in the manner of Whittington and 
Guttmann (1990), who prove the result for d = 2 (We note that their proof contains a 
minor error: the term 2 p ( p  - I )  in their equation (3.4) should be multiplied by a term of 
order M. This means only that the logx term in their equation (3.8) should be divided by 

0 

The next result is the key to proving that xc cannot be greater than &-I. It will require 

M + 2 instead of (M + 2)2. This does not affect the rest of their proof.) 

some notational preparation and a couple of lemmas before we complete the proof. 

Proposition 4.2. For any x > p-’ we have IimL,,  CL(^)'/^^ > 1 

We recall some definitions and notation from Madras and Slade (1993). If w is an n-step 
self-avoiding walk in Zd, then we shall write w = ( ~ ( 0 ) .  . . . , o(n) ) ,  where w ( i )  is the ith 
site of the walk. We denote the coordinates of the site w(i)  by w,(i) ( j  = 1..  . . , d). 

An n-step bridge is defined to be an n-step self-avoiding walk w whose first coordinates 
satisfy the inequality 

wr(0)  < ol(i) 4 wt(n)  for every i = I . .  . . , n . (18) 
The number of n-step bridges starting at the origin is denoted by b,. The span of the n-step 
bridge w is defined to be w~ (n) - wj(0) .  

It will often be convenient to write Zd as Z x Zd-’, grouping the last d - I 
coordinates together as a single vector. Thus if 1 E Z and y = (yr, , . . , yd-1) E Zd-], 
we write (1. y) to denote the point (1. yl.. . , , yd-[) in Zd. I n  particular, we will write 
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( I ,  L)  = ( I ,  L ,  . . . , L )  E Zd (in this context, L is in Ed- ' ) .  The number of n-step bridges 
starting at the origin and ending at ( I ,  y )  E Zd is denoted bn,i(y). 

Notice that a walk from 0 to L that is contained in [0, LId need not be a bridge, since 
it  may touch the set (01 x [O, L.Id-l more than once. However, if we add a single step from 
(- 1,O) to the origin, then we get a bridge of span L + 1. Therefore 

(19) C"(L) s ~ n + l , L + l ( o  s ba+l <!JL"+' 

(the last inequality comes from equation (12.17) of Madras and Slade 1993). 

Lemma 4.3. Let d 2 2 and let 6 > 0. Then there exist odd integers s and M such that 
b.V.M(O) > (P -€)I. 

Proojf 
an n > 0 such that 

Since lim,,,(b,,)'/" = p (corollary 3.1.6 of Madras and Slade 1993), there exists 

(2n + I)-db, z (@-€)"+I . 
Therefore there exists ( l ,  y )  E ([I, n] x [ -n,  nId - ' )  r l  Zd such that b,,r(y) > (p - E)"+' .  
Consider the concatenation of a bridge from the origin to (1, y) .  followed by a single step 
to ( I  + 1, y ) ,  followed by a bridge from ( 1  + I ,  y )  to (21 + 1,O). We then see that 

~2n+i,z/+i(o) 2 brz.i(Y)bn,d-Y) = bn,i(Y)' > (P - 
Setting s = 2n + 1 and M = 21 + 1 implies the result. 0 

Lemma 4.4. Let E > 0, and choose s and M as in lemma 4.3. Let j and p be positive 
integers with p odd. Define N = p"-'js + (2s t l)(pd-' + d - 2) + 1 and L = 2ps + I .  
Then the number of N-step self-avoiding walks that start at the origin, end at ( j M  + 1, L ) ,  
and lie entirely in [0, j M  + I ]  x [0, Lid-', is at least ( p  - e)P"-'j,". 

Proojf For positive integers n and I, let i3;,i denote the set of all n-step bridges w of span 
l such that w ( 0 )  = 0, w ( n )  = ( I . O ) ,  and w ( i )  E (0, I ]  x (-s, s ) ~ - '  for every i = I , .  . . ,n. 
Since every s-step bridge of span I is contained in the box [O,  I ]  x (-s, s ) ~ - ' ,  we have 
b,v,,(0) = [qiI for every I 2 1. Also, concatenation of bridges implies that for every j 2 I ,  

(20) 

Let j and p be positive integers with p odd. Let V ( p )  be the following set of vectors 

lB;.v,iMl 2 I q M l J  = b.,,M(OY > (P - E)1' 

where we have used lemma 4.3 for the last inequality. 

in Z*: 

V ( p )  := [(O, uz,  . . . , u d )  : 1 < ui < 2 p  - 1 and ut is odd, i = 2, .  . . , d )  

Thus V ( p )  contains pd-' vectors. For each vector w E V ,  define the (translated) box 

~ [ w ]  := (LO, j ~ ]  x ( - s , s ) ~ - ' )  +sv 

Observe that the boxes T [ v ]  are pairwise disjoint and that each is contained in the large 
box [O. j M ]  x [O, 2psld- ' .  

The sites of V ( p )  form a (d - 1)-dimensional cube, and since p is odd i t  is possible to 
order them as U ( ' ) ,  U(*), . . . , U('''-') so that U(') = (0, l), v(Pd-') = (0,2p-1), and U(') and 
~(~ - l )  are Euclidean distance 2 apart for each i .  (This may be proven by induction on d ,  
exactly as in lemma 7.2.4(a) of Madras and Slade 1993). 

Let di), i = I , .  . , , pd-' ,  be a collection of bridges (not necessarily distinct) in Bj,v,jM. 
Let @(') = di) +sw('); then @ ( l )  is a bridge which lies in the box T[v("]. We now join up 

- 
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these bridges by adding some additional steps, as follows. Start with (d - 1)s steps from 0 
to s&); then $di); then take 2s + 2 steps from ( j M ,  0) + s d ' )  to ( j M  + 1,O) + s d i )  to 
( j M + l ,  O)+sv'" to ( j M ,  0)+sd2) ;  then the steps of @(*I in reverse order, ending at s@); 
then 2s steps from U(') to d3), then $@), and so on. For each even i ,  we use @(i) in reverse 
order; then we take 2s steps (in the XI = 0 hyperplane) to get from s d i )  to sdt+i); then 
we use @(i+l)  in forward order; then we take 2s + 2 steps to get from ( j M ,  0) + S U ( ~ + ~ )  to 
( j M ,  O ) + S V ( ' + ~ ) ,  with all intermediate sites in the XI = j M  + 1 hyperplane (this is because 
the bridges @ may have many sites in the hyperplane xi = j M ,  in contrast to the fact that 
only their initial sites can lie in the hyperplane XI = 0, by (18)). Finally, after the last bridge 
@ ( p d - ' )  is used (in its forward order), we take (s + l)(d - I )  + 1 steps to go from from 
( j M ,  0) + s d p d - ' )  = ( j M .  s (2p  - I), . . . , s(2p - 1)) to ( j M +  I ,  2ps + I ,  . . . ,2ps  + I) = 
( j M +  1. L). The result is a self-avoiding walk that starts at the origin, ends at ( j M +  I ,  L),  
and lies entirely in 10. j M  + I] x [0, Lid-'. The number of steps in this walk is exactly 
p d - ' ( j s ) + s ( d -  l ) + ( 2 s t 2 ) ( p d - ' - 1 ) / 2 + 2 s ( p d - ' -  1)/2+(s+ l ) ( d -  I ) +  1. which 
equals N .  Finally, the construction shows that there are at least IBjxSjMlpd" such walks, 
and so the lemma follows from (20). 0 

Proofofproposition 4.2. Fix x > p-'. and choose c > 0 such that x ( p  -E) > 1. Let 
s and M be as in lemma 4.3. For any odd positive integer t,  let j = j ( t )  = 2st and 
p = p ( t )  = Mf. Then lemma 4.4 defines 

N = N ( t )  = 2Md-IsZtd + (2s + l ) (Md- ' td - I  + d - 2 )  + 1 

and 

L = L( t )  = 2 s M t +  I .  

Noting that L ( t )  = j ( t )M + 1, lemma 4.4 says that 

C N ( t ) ( W )  a (P - 6) (21) p(fF ' j ( iA*  , 

Now, for any odd t .  we have 

C L ( , ) ( X )  b CN( , ) (L( t ) )X""  . 
Now, raise both sides of (22) to the l /L ( t )d  power, and let f 4 W. Since 

lim - - - ( 2 s M ) d  
r-m t d  

we see that 
p(t1d-l j ( t )s - ?.s2n/I"-' - ~ ~ - ~ s ~ - ~  N (0 = lim - 

i+m L(t)d (2sM)d M t-+m L(t)d 
lim - - 

Using these observations and (21), we conclude that 
I-< 2-d &,f lim infcL(,)(x)l/L(f)d 2 [ ( p  - e)x12 / > I 

r-m 

where the last inequality holds because ( p  - E)X > 1. The existence of the limit follows 
0 

A mass for bridges can be defined as follows. First, for x > 0 and (1, y )  E Zd with 

from lemma 4.1, and thus the proposition is proved. 

1 2 0, define the generating function 
m 
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T 

Figure 2. The rectangles Tj and 72 in the proof of 

'" -1 
0 T ZT L-ZT L-T L proposition 4.5 (d = 2). 

Then let 

This limit always exists: it  equals the usual mass m(x) for 0 < x < p-I, is 0 for x = p-l, 

and equals -CO for x > p-' (see Chayes and Chayes 1986 or section 4.1 of Madras and 
Slade 1993). 

Proposition 4.5. For all x t 0, -dM(x)  < fi(x) < - M ( x ) .  In particular, f j (pL- l )  = 0. 

Proof: Equation (19) implies that C,(x) 6 x- 'B, (1 ,L) .  Combining the second part 
of equation (4.1.12) with lemma 4.1.12 from Madras and Slade (1993). we see that 
&(L, L) < e-LM(x). It follows that fI(x) < -M(x) for dl x z 0. 

To prove the lower bound on f i ( x ) ,  fix an integer T > 0 and let L > 4T.  Define the 
sites di) E Zd, i = 0, 1, . . . , d ,  as follows. The first i coordinates of U(') equal T and the 
remaining d - i coordinates equal L - T .  Let e(i), i = 1. . . . , d denote the positive unit 
vectors of Zd (i.e. the ith coordinate of e( i )  is 1 and the other coordinates are all 0). Then 
uCi+l) = U(') + ( L  - 2T)e"' for every i = 0,. . . , d - 1. For i = 1, .  . . , d, define the box 

5 := { ( y ~ ,  I . , .yd) 6 Zd : 2 T  < yi < L -2T,  and Iyj -uy) l  c T for all j # i). 
(See figure 2 for the two-dimensional case.) Thus '& is a 'square tube of radius T' and 
length L - 4T, centered along the line from U('-') to di). Also observe that the 5 ' s  are 
pairwise disjoint. 

Consider the set Wi of all self-avoiding walks that start at u('-')+Te('), end at u(')-Te(') 
(= U('-') + ( L  - 3T)e( ' ) ) ,  and have all of their intermediate sites inside Z. The generating 
function of Wi is B:-'(L - 4T, 0), using the notation of definition 4.1.10 of Madras and 
Slade (1993). If w( ' )  is a walk in Wi for each i = 1 , .  . . , d ,  then we can join these walks 
together as follows: for each i = 1, . . . , d ,  add T steps to go from d - l )  to the beginning 
of a('), and T more to go from the end of w(') to U@). Finally, add d T  steps from 0 
to do), and d T  more steps from dd) to L. The result is a self-avoiding walk from 0 to L 
that is contained in 10, Lid. Consideration of the generating function of walks that can be 
consmcted in this way shows that 

5 c [O, L l d  to be 

C,(x) 2 [BT-'(L - 4 T ,  O)]dx4d' 
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for all L > 4T > 0. Therefore 

log C,(x) L - 4T d log B:-I(L - 4T, 0) 4dT IOgx 
L L L-4T + L '  2- 

Let L + CO with T fixed. Then (4.1.17) of Madras and Slade (1993) yields f i ( x )  > 
-dMT-'(x),  where M'-'(x) is a 'truncated mass' for bridges restricted to a tube of 

0 
radius T. Finally, lemma 4.1.1 1 of Madras and Slade (1993) says that IimT,, MT-' ( x )  = 
M(x)  for all x > 0, and so f i ( x )  > -dM(x). 

Proofofrheorem2.1. This all follows from lemma 4.1, proposition 4.2, and proposition 4.5. 
0 

Proof of theorem 2.2. First consider a fixed x with 0 < x < @-I ,  and we shall prove 
that ( l o ~ l ) ~ . ~  L. Since d L  < 101 < Ld for every walk from 0 to L, i t  suffices to show 
that P x . ~ [ l o l  > A L J  decays exponentially as L -+ CO, for some finite A. Choose A large 
enough so that e AI@).  Then, for any L, 

@y equation (19)) 

p(I*x)AL 
(1 - / L X ) C L ( X )  ' 

G 

As L + CO, the 1/L power of the last expression tends to ( p ~ ) ~ / A ~ ( x )  c I .  Thus we 
conclude that {lal)x,~ L. 

Now fix x > p-'. To prove (lol)x.r L d ,  it suffices to show that Px,L(lw[ .$ 6 L d ]  
decays exponentially for some 6 > 0. To do this, choose 6 small enough so that 

0 c A&), and then argue analogously to the preceding paragraph. 

Proof of theorem 2.3. For any non-negative sequence (a, : n > 0), Holder's inequality 
shows that log(C,a,ep") is a convex function of p (lemma 4.1.2 of Madras and Slade 
1993). Therefore log C L ( X )  is a convex function of logx for every L.  Since limits preserve 
convexity, we see that f i ( x )  and f i ( x )  are also convex functions of logx. Proposition 4.5, 
together with the fact that M ( x )  = m ( x )  for 0 < x < p- ' ,  shows that fi(x) m(x).  The 
bounds 0 e fZ(x) < logp  + logx for x > p-' follow from proposition 4.2 above and 
(3.15) of Whittington and Guttmann (1990). 

Since CL(X)  is non-decreasing in x > 0, so are fi ( x )  and f z ( x ) .  It only remains to show 
strict monotonicity on the appropriate intervals. Since f i ( x )  decreases to 0 as x decreases 
to p-' (by the bounds 0 < f i ( x )  < l o g p  + logx), and since f2 is a convex function of 
logx, it follows that f 2  must be strictly increasing for x > p-' .  Similarly, f I ( x )  tends to 
--CO as x decreases to 0 (by the bound f t ( x )  G dlog(px) from (6)). So the convexity of 

0 fr implies that it must be strictly decreasing. 

Proof of theorem 2.4. This proof uses the renewal theory structure of section 4.2 of Madras 
and Slade (1993). First, we recall that a bridge is irreducible if it may not be expressed as 
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the concatenation of two smaller bridges. Let AX(!, y )  denote the generating function of all 
irreducible bridges that start at 0 and end at ( I ,  y )  E Zd,  Then 

by (4.2.4) of Madras and Slade (1993). Let XI, XI,. . . be a sequence of independent 
Zd-valued random vectors with the common distribution 

PrtXi = ( l , ~ ) l = A ~ - ~ ( l , ~ )  for every i .  (27 ) 
Then, arguing as for (4.2.28) of Madras and Slade (1993), we obtain 

B,-l(1, y )  = &{XI + ' .  + Xk = ( I ,  y )  for some k 2 I ] .  (28) 
Now, the random walk XI + . .'+XI is clearly transient (since the first coordinate of every 
X; is strictly positive). Then proposition 25.3 of Spitzer (1976) tells us that 8,-i ( I ,  y )  tends 
to 0 as I([, y)I tends to infinity. In particular, 

Since  CL(^-') < pBBP-1(L + I ,  L) (by the first inequality of (19)), equation (29) implies 
0 

Proof of theorem 3.1. Existence of the limit follows as in lemma 4.1, and the proof that 
0 c hy(x)  < 1 for 0 c x < j ~ ; '  is just like in (5) and (6). For x > &;I, the proof 
that h$(x) > 1 also looks the same: for n 2 1, I 2 1, and y E let a,,c(y) be the 
number of animals that contain the two sites 0 and ( I ,  y). and are entirely contained in 
the set (x E Zd : 0 < X I  < 11. Then, as in lemma 4.3, for any E > 0 there exist odd 
positive integers s and M such that a , y , ~ ( 0 )  > (p - c ) ~ .  The proofs of lemma 4.4 and 
proposition 4.2 now proceed essentially unchanged. Finally, everything works for trees as 
well as for animals. 0 

that C ~ ( p - l )  tends to 0 as L + W. 

We now present the final ingredient in the proof of theorem 3.3. 
Proposition 4.6. For x > p-', 

ProoJ We begin by proving the inequality 

e.L+2(x) 2 XO(ZdL)C'(X)Zd (31) 
for every L.  Let ul ' l  . . . , u ~ * ~ ]  be the comers of the cube [-I ,  l]', listed so that ulil and uli+'l 
are distance 2 apart for each i = I ,  . . . , Zd - I .  (This is possible: e.g. see lemma 7.2.4(a) 
of Madras and Slade (1993) with b = I in the proof.) For each i = I , ,  . . , Z', let oi 
be a self-avoiding walk from uI'I to (L + I)d'l which is contained in the cube of side L 
that has ulil and ( L  + I ) d i l  as opposite corners. (So the W , ' S  are disjoint and all lie in 
[-L - 1, L + I]'.) Notice that ( L  + 1)d" and ( L  + I ) U ' ' + ~ ~  differ in a single coordinate, 
and so the distance between them is exactly 2L  + 2. 

Now we join up the mi's to make a big self-avoiding walk : that starts at the origin 
and is contained in the cube [ - L  - 2, L + 2Id. The procedure is the following: join the 
origin to the first site of 01 (d steps); join the last site of W I  to the last site of w (2L + 4 
steps: one step to get to a boundary face of [-L - 2, L + 2Id, then 2L + 2 steps in a 
straight line in that face, then one more step); join the first site of or to the first site of 
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03 (two steps); and so on. The resulting walk $ is made up of the wi’s and an additional 
d + Zd-I(2L + 4)  + (Zd-’ - 1)2 steps. The generating function of such animals is less than 
CL+z(x) and is greater than x2d~Lt3)w-zCL(x)zd. This proves (31). 

0 The result now follows from (31) and the definition of A z ( x )  (equation (4)). 

Proof of theorem 3.4. We shall give the proof for animals; the same method applies to 
trees. First, we note that the proof of proposition 4.6 applies equally well to animals (or 
trees), and so 

liminf,TL(x)”(2L~d L-iW > ~ ; ( x ) .  (32) 

To prove the reverse inequality for the lim sup, we shall use the inequality 

which is proven as follows. Let U be an animal with n bonds that contains 0 and is contained 
in [-L, Lid. Then it is possible to add at most 2dL bonds to U and obtain an animal U’ that 
contains -L and L, and is contained in [ - L ,  Lid. On detail: fix a 2dL-step self-avoiding 
walk w that starts at -L, ends at L, and passes through 0. Let uf (respectively, U,) be the 
first (respectively, last) site of a that occurs on 0. Let U’  be the union of U ,  the part of 
w between -L and uf, and the part of w between UI and L.) The inequality (33) follows 
from this. In terms of generating functions, (33) implies 

It is now evident that 

Combining (32) and (35) proves the theorem. 0 

5. Discussion 

We have proved that the ensemble of walks crossing a square (or more generally a d- 
dimensional hypercube) exhibits a transition from linear ( ( l ~ l ) ~ . ~  x L )  to dense ( ( l ~ l ) ~ , ~  = 
L d )  behaviour at x = I - ] ,  where I.L is the connective constant for self-avoiding walks in Zd. 
This confirms a conjecture of Whittington and Guttmann (1990) for the two-dimensional 
case, and it also rules out any intermediate transitions (such as a range of x over which 
( I w l ) L , ~  x L2 in d = 3). We also prove a corresponding result for walks with free 
endpoints in a cube. as well as similar results for lattice animals and lattice trees. We also 
investigated the scaling of the limiting free energy as x increases to I - ’ ,  concluding that 
f, ( x )  ( I - ]  - x ) ”  (assuming that the exponent U governs the decay of the mass of self- 
avoiding walks in @). Analogues of these results have previously been proved rigorously 
for the Sierpinski gasket by Hattori et nl (1990). 

The methods and results of the present paper also confirm part of the analysis of %vi&, 
Milobevit and Stanley (1993) concerning a certain fractal-to-Euclidean crossover. They 
considered a family of (discrete) fractals which consist of b x b blocks of Z* which are 
joined to other blocks only at two opposite corners. Their generating function for the 
number of self-avoiding walks, CfMS(x), clearly lies between our C&) and the ordinary 
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susceptibility x(z) for Z2 (see equation (15)). So our theorem Z.l(ii) shows that the critical 
fugacity x z  of CbzMs(x) converges to p-' as b -+ 00 (see table 2 and footnote [23] in &vi6 
et al(l993)). (We remark that the squares in zivit  et a1 (1993) are rotated by 45", but that 
does not affect our methods.) 

Two questions regarding the dense phase (x  > p- ' )  were left conspicuously unanswered 
in the present paper, namely, can we say anything rigorous about the belief that the limiting 
free energy fi behaves as ( x  - P-')~" as x decreases to p-'? And can we prove the 
existence of the limiting free energy for dense walks with free endpoints? These appear to 
be hard questions which deal directly with detailed properties of dense walks. 

There is one more intriguing question about the dense phase: can we prove the existence 
of a limiting probability distribution for any of the ensembles described in this paper, for 
any x =- ,K1? This would give a natural measure on a class of infinite, dense polymers. We 
believe that this would be easier for animals or trees than for walks. For one very special 
case, this has actually been accomplished by Pemantle (1991): he considered uniformly 
distributed spanning trees of [ - L ,  Lid, corresponding to x = +cc in our tree models. 
Pemantle showed that these distributions have a weak limit as L -+ 00, but the limiting 
objects are trees only fo rd  < 4; f o r d  2 5, they are disconnected, so the limiting distribution 
is actually on spanning forests of Zd. We do not know whether this surprising fact has any 
analogue when p-' e x e +co, or whether something similar happens for walks or 
animals. 
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